Research

Projects

 

Image of Morgan Lab members

Selected Publications

  • Morgan, E. and Levy, R. (In press). Productive knowledge and item-specific knowledge trade off as a function of frequency in multiword expression processing. Language. https://doi.org/10.31234/osf.io/bduyv
  • Brothers, T., Morgan, E., Yacovone, A., & Kuperberg, G. (2023). Multiple predictions during language comprehension: Friends, foes, or indifferent companions? Cognition241, 105602. https://doi.org/10.1016/j.cognition.2023.105602
  • Jesse, K., Ahmed, T., Devanbu, P. & Morgan, E. (2023). Large Language Models and Simple, Stupid Bugs. To appear in: Proceedings of the 20th International Conference on Mining Software Repositories (MSR 2023). https://doi.org/10.48550/arXiv.2303.11455
  • Chantavarin, S., Morgan, E. & Ferreira, F. (2022) Robust processing advantage for binomial phrases with variant conjunctions. Cognitive Science 46(9)https://doi.org/10.1111/cogs.13187
  • Dodd, N., & Morgan, E. (2022). Expectations and Noisy-Channel Processing of Relative Clauses in Arabic. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 44, No. 44). https://escholarship.org/uc/item/51d7m5np
  • Verosky, N. & Morgan, E. (2021). Pitches that Wire Together Fire Together: Scale Degree Associations Across Time Predict Melodic Expectations. Cognitive Science, 45(10). https://doi.org/10.1111/cogs.13037
  • Fernandez Mira, P., Morgan, E., Sagae, K., Carando, A., Davidson, S., & Yamada, A. (2021). Lexical Diversity in an L2 Spanish Learner Corpus: The Effect of Topic-Related Variables. International Journal of Learner Corpus Research, 7:2. https://doi.org/10.1075/ijlcr.7.2
  • Casalnuovo, C., Lee, K., Wang, H., Devanbu, P., & Morgan, E. (2020). Do Programmers Prefer Predictable Expressions in Code? Cognitive Science, 44(12). http://dx.doi.org/10.1111/cogs.12921
  • Gonering, B. & Morgan, E. (2020). Uniform processing difficulty is a poor predictor of cross-linguistic word order frequency. In: Proceedings of the 24th Conference on Computational Natural Language Learning (CoNLL), pp. 245-255. https://www.aclweb.org/anthology/2020.conll-1.18
  • Casalnuovo, C., Devanbu, P., & Morgan, E. (2020). Does Language Model Surprisal Measure Code Comprehension?. In: Proceedings of the 42nd Annual Conference of the Cognitive Science Society, pp. 564-570. https://cogsci.mindmodeling.org/2020/papers/0102/0102.pdf
  • Liu, Z. & Morgan, E. (2020). Frequency-dependent Regularization in Constituent Ordering Preferences. In: Proceedings of the 42nd Annual Conference of the Cognitive Science Society, pp. 2990-2996. https://cogsci.mindmodeling.org/2020/papers/0750/0750.pdf
  • Casalnuovo, C., Barr, E., Dash, S., Devanbu, P., & Morgan, E. (2020). A Theory of Dual Channel Constraints (NIER track). In: 2020 42nd International Conference on Software Engineering (ICSE). IEEE. https://dl.acm.org/doi/pdf/10.1145/3377816.3381720
  • Morgan, E., Fogel, A., Nair, A., & Patel, A. D. (2019). Statistical learning and Gestalt-like principles predict melodic expectations. Cognition, 189, 23–34. http://doi.org/10.1016/j.cognition.2018.12.015 [postprint]
  • Delaney-Busch, N., Morgan, E., Lau, E., & Kuperberg, G. R. (2019). Neural evidence for Bayesian trial-by-trial adaptation on the N400 during semantic priming. Cognition, 187, 10–20. http://doi.org/10.1016/j.cognition.2019.01.001 [pdf]
  • Delaney-Busch, N., Morgan, E., Lau, E., & Kuperberg, G. (2017). Comprehenders Rationally Adapt Semantic Predictions to the Statistics of the Local Environment: a Bayesian Model of Trial-by-Trial N400 Amplitudes. In: Proceedings of the 39th Annual Conference of the Cognitive Science Society, pp. 283-288. [pdf]